Effect of topology on the multiplicity of solutions for some semilinear elliptic systems with critical Sobolev exponent
نویسندگان
چکیده
منابع مشابه
Existence of solutions for elliptic systems with critical Sobolev exponent ∗
We establish conditions for existence and for nonexistence of nontrivial solutions to an elliptic system of partial differential equations. This system is of gradient type and has a nonlinearity with critical growth.
متن کاملThe Solvability of Concave-Convex Quasilinear Elliptic Systems Involving $p$-Laplacian and Critical Sobolev Exponent
In this work, we study the existence of non-trivial multiple solutions for a class of quasilinear elliptic systems equipped with concave-convex nonlinearities and critical growth terms in bounded domains. By using the variational method, especially Nehari manifold and Palais-Smale condition, we prove the existence and multiplicity results of positive solutions.
متن کاملMultiplicity of Solutions for Singular Semilinear Elliptic Equations with Critical Hardy-sobolev Exponents
where Ω ⊂ R(N ≥ 4) is an open bounded domain with smooth boundary, β > 0, 0 ∈ Ω, 0 ≤ s < 2, 2∗(s) := 2(N − s) N − 2 is the critical Hardy-Sobolev exponent and, when s = 0, 2∗(0) = 2N N − 2 is the critical Sobolev exponent, 0 ≤ μ < μ := (N − 2) 4 . In [1] A. Ferrero and F. Gazzola investigated the existence of nontrivial solutions for problem (1.1) with β = 1, s = 0. In [2] D. S. Kang and S. J. ...
متن کاملNon-homogeneous semilinear elliptic equations involving critical Sobolev exponent
where λ > 0 is a parameter, κ ∈ R is a constant, p = (N + 2)/(N − 2) is the critical Sobolev exponent, and f(x) is a non-homogeneous perturbation satisfying f ∈ H−1(Ω) and f ≥ 0, f ≡ 0 in Ω. Let κ1 be the first eigenvalue of −Δ with zero Dirichlet condition on Ω. Since (1.1)λ has no positive solution if κ ≤ −κ1 (see Remark 1 below), we will consider the case κ > −κ1. Let us recall the results f...
متن کاملMultiplicity of Positive Solutions for Semilinear Elliptic Systems
and Applied Analysis 3 Let Kλ,μ : E → R be the functional defined by Kλ,μ (z) = ∫ Ω (λf (x) |u| q + μg (x) |V| q ) dx ∀z = (u, V) ∈ E. (11) We know that Iλ,μ is not bounded below on E. From the following lemma, we have that Iλ,μ is bounded from below on the Nehari manifoldNλ,μ defined in (9). Lemma 3. The energy functional Iλ,μ is coercive and bounded below onNλ,μ. Proof. If z = (u, V) ∈ Nλ,μ, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nonlinear Differential Equations and Applications NoDEA
سال: 2009
ISSN: 1021-9722,1420-9004
DOI: 10.1007/s00030-009-0028-7